
Package: minpack.lm (via r-universe)
October 21, 2024

Version 1.2-4

Title R Interface to the Levenberg-Marquardt Nonlinear Least-Squares
Algorithm Found in MINPACK, Plus Support for Bounds

Author Timur V. Elzhov, Katharine M. Mullen, Andrej-Nikolai Spiess,
Ben Bolker

Maintainer Katharine M. Mullen <mullenkate@gmail.com>

Description The nls.lm function provides an R interface to lmder and
lmdif from the MINPACK library, for solving nonlinear
least-squares problems by a modification of the
Levenberg-Marquardt algorithm, with support for lower and upper
parameter bounds. The implementation can be used via nls-like
calls using the nlsLM function.

Suggests MASS

License GPL-3

Copyright inst/COPYRIGHTS

NeedsCompilation yes

Date/Publication 2023-09-11 05:10:02 UTC

Repository https://k-m-m.r-universe.dev

RemoteUrl https://github.com/cran/minpack.lm

RemoteRef HEAD

RemoteSha ba4c57f85fb6ec930c2c098e2cacfce7dec6d35d

Contents
nls.lm . 2
nls.lm.control . 7
nlsLM . 8
wfct . 12

Index 14

1

2 nls.lm

nls.lm Addresses NLS problems with the Levenberg-Marquardt algorithm

Description

The purpose of nls.lm is to minimize the sum square of the vector returned by the function fn, by
a modification of the Levenberg-Marquardt algorithm. The user may also provide a function jac
which calculates the Jacobian.

Usage

nls.lm(par, lower=NULL, upper=NULL, fn, jac = NULL,
control = nls.lm.control(), ...)

Arguments

par A list or numeric vector of starting estimates. If par is a list, then each element
must be of length 1.

lower A numeric vector of lower bounds on each parameter. If not given, the default
lower bound for each parameter is set to -Inf.

upper A numeric vector of upper bounds on each parameter. If not given, the default
upper bound for each parameter is set to Inf.

fn A function that returns a vector of residuals, the sum square of which is to be
minimized. The first argument of fn must be par.

jac A function to return the Jacobian for the fn function.

control An optional list of control settings. See nls.lm.control for the names of the
settable control values and their effect.

... Further arguments to be passed to fn and jac.

Details

Both functions fn and jac (if provided) must return numeric vectors. Length of the vector returned
by fn must not be lower than the length of par. The vector returned by jac must have length equal
to length(fn(par, . . .)) · length(par).
The control argument is a list; see nls.lm.control for details.

Successful completion.

The accuracy of nls.lm is controlled by the convergence parameters ftol, ptol, and gtol. These
parameters are used in tests which make three types of comparisons between the approximation par
and a solution par0. nls.lm terminates when any of the tests is satisfied. If any of the convergence
parameters is less than the machine precision, then nls.lm only attempts to satisfy the test defined
by the machine precision. Further progress is not usually possible.
The tests assume that fn as well as jac are reasonably well behaved. If this condition is not satis-
fied, then nls.lm may incorrectly indicate convergence. The validity of the answer can be checked,
for example, by rerunning nls.lm with tighter tolerances.

nls.lm 3

First convergence test.
If |z| denotes the Euclidean norm of a vector z, then this test attempts to guarantee that

|fvec| < (1 + ftol) |fvec0|,

where fvec0 denotes the result of fn function evaluated at par0. If this condition is satisfied with
ftol ≃ 10−k, then the final residual norm |fvec| has k significant decimal digits and info is set
to 1 (or to 3 if the second test is also satisfied). Unless high precision solutions are required, the
recommended value for ftol is the square root of the machine precision.

Second convergence test.
If D is the diagonal matrix whose entries are defined by the array diag, then this test attempt to
guarantee that

|D (par − par0)| < ptol |Dpar0|,

If this condition is satisfied with ptol ≃ 10−k, then the larger components of (Dpar) have k sig-
nificant decimal digits and info is set to 2 (or to 3 if the first test is also satisfied). There is a danger
that the smaller components of (Dpar) may have large relative errors, but if diag is internally
set, then the accuracy of the components of par is usually related to their sensitivity. Unless high
precision solutions are required, the recommended value for ptol is the square root of the machine
precision.

Third convergence test.
This test is satisfied when the cosine of the angle between the result of fn evaluation fvec and any
column of the Jacobian at par is at most gtol in absolute value. There is no clear relationship
between this test and the accuracy of nls.lm, and furthermore, the test is equally well satisfied at
other critical points, namely maximizers and saddle points. Therefore, termination caused by this
test (info = 4) should be examined carefully. The recommended value for gtol is zero.

Unsuccessful completion.

Unsuccessful termination of nls.lm can be due to improper input parameters, arithmetic inter-
rupts, an excessive number of function evaluations, or an excessive number of iterations.

Improper input parameters.
info is set to 0 if length(par) = 0, or length(fvec) < length(par), or ftol < 0, or ptol < 0,
or gtol < 0, or maxfev ≤ 0, or factor ≤ 0.

Arithmetic interrupts.
If these interrupts occur in the fn function during an early stage of the computation, they may be
caused by an unacceptable choice of par by nls.lm. In this case, it may be possible to remedy the
situation by rerunning nls.lm with a smaller value of factor.

Excessive number of function evaluations.
A reasonable value for maxfev is 100 · (length(par) + 1). If the number of calls to fn reaches
maxfev, then this indicates that the routine is converging very slowly as measured by the progress
of fvec and info is set to 5. In this case, it may be helpful to force diag to be internally set.

Excessive number of function iterations.

4 nls.lm

The allowed number of iterations defaults to 50, can be increased if desired.

The list returned by nls.lm has methods for the generic functions coef, deviance, df.residual,
print, residuals, summary, confint, and vcov.

Value

A list with components:

par The best set of parameters found.

hessian A symmetric matrix giving an estimate of the Hessian at the solution found.

fvec The result of the last fn evaluation; that is, the residuals.

info info is an integer code indicating the reason for termination.

0 Improper input parameters.
1 Both actual and predicted relative reductions in the sum of squares are at most

ftol.
2 Relative error between two consecutive iterates is at most ptol.
3 Conditions for info = 1 and info = 2 both hold.
4 The cosine of the angle between fvec and any column of the Jacobian is at

most gtol in absolute value.
5 Number of calls to fn has reached maxfev.
6 ftol is too small. No further reduction in the sum of squares is possible.
7 ptol is too small. No further improvement in the approximate solution par

is possible.
8 gtol is too small. fvec is orthogonal to the columns of the Jacobian to ma-

chine precision.
9 The number of iterations has reached maxiter.

message character string indicating reason for termination

.

diag The result list of diag. See Details.

niter The number of iterations completed before termination.

rsstrace The residual sum of squares at each iteration. Can be used to check the progress
each iteration.

deviance The sum of the squared residual vector.

Note

The public domain FORTRAN sources of MINPACK package by J.J. Moré, implementing the
Levenberg-Marquardt algorithm were downloaded from https://netlib.org/minpack/, and left
unchanged. The contents of this manual page are largely extracted from the comments of MIN-
PACK sources.

https://netlib.org/minpack/

nls.lm 5

References

J.J. Moré, "The Levenberg-Marquardt algorithm: implementation and theory," in Lecture Notes
in Mathematics 630: Numerical Analysis, G.A. Watson (Ed.), Springer-Verlag: Berlin, 1978, pp.
105-116.

See Also

optim, nls, nls.lm.control

Examples

example 1

values over which to simulate data
x <- seq(0,5,length=100)

model based on a list of parameters
getPred <- function(parS, xx) parS$a * exp(xx * parS$b) + parS$c

parameter values used to simulate data
pp <- list(a=9,b=-1, c=6)

simulated data, with noise
simDNoisy <- getPred(pp,x) + rnorm(length(x),sd=.1)

plot data
plot(x,simDNoisy, main="data")

residual function
residFun <- function(p, observed, xx) observed - getPred(p,xx)

starting values for parameters
parStart <- list(a=3,b=-.001, c=1)

perform fit
nls.out <- nls.lm(par=parStart, fn = residFun, observed = simDNoisy,
xx = x, control = nls.lm.control(nprint=1))

plot model evaluated at final parameter estimates
lines(x,getPred(as.list(coef(nls.out)), x), col=2, lwd=2)

summary information on parameter estimates
summary(nls.out)

example 2

function to simulate data
f <- function(TT, tau, N0, a, f0) {

expr <- expression(N0*exp(-TT/tau)*(1 + a*cos(f0*TT)))
eval(expr)

}

6 nls.lm

helper function for an analytical gradient
j <- function(TT, tau, N0, a, f0) {

expr <- expression(N0*exp(-TT/tau)*(1 + a*cos(f0*TT)))
c(eval(D(expr, "tau")), eval(D(expr, "N0")),

eval(D(expr, "a")), eval(D(expr, "f0")))
}

values over which to simulate data
TT <- seq(0, 8, length=501)

parameter values underlying simulated data
p <- c(tau = 2.2, N0 = 1000, a = 0.25, f0 = 8)

get data
Ndet <- do.call("f", c(list(TT = TT), as.list(p)))
with noise
N <- Ndet + rnorm(length(Ndet), mean=Ndet, sd=.01*max(Ndet))

plot the data to fit
par(mfrow=c(2,1), mar = c(3,5,2,1))
plot(TT, N, bg = "black", cex = 0.5, main="data")

define a residual function
fcn <- function(p, TT, N, fcall, jcall)

(N - do.call("fcall", c(list(TT = TT), as.list(p))))

define analytical expression for the gradient
fcn.jac <- function(p, TT, N, fcall, jcall)

-do.call("jcall", c(list(TT = TT), as.list(p)))

starting values
guess <- c(tau = 2.2, N0 = 1500, a = 0.25, f0 = 10)

to use an analytical expression for the gradient found in fcn.jac
uncomment jac = fcn.jac
out <- nls.lm(par = guess, fn = fcn, jac = fcn.jac,

fcall = f, jcall = j,
TT = TT, N = N, control = nls.lm.control(nprint=1))

get the fitted values
N1 <- do.call("f", c(list(TT = TT), out$par))

add a blue line representing the fitting values to the plot of data
lines(TT, N1, col="blue", lwd=2)

add a plot of the log residual sum of squares as it is made to
decrease each iteration; note that the RSS at the starting parameter
values is also stored
plot(1:(out$niter+1), log(out$rsstrace), type="b",
main="log residual sum of squares vs. iteration number",
xlab="iteration", ylab="log residual sum of squares", pch=21,bg=2)

get information regarding standard errors

nls.lm.control 7

summary(out)

nls.lm.control Control various aspects of the Levenberg-Marquardt algorithm

Description

Allow the user to set some characteristics Levenberg-Marquardt nonlinear least squares algorithm
implemented in nls.lm.

Usage

nls.lm.control(ftol = sqrt(.Machine$double.eps),
ptol = sqrt(.Machine$double.eps), gtol = 0, diag = list(), epsfcn = 0,
factor = 100, maxfev = integer(), maxiter = 50, nprint = 0)

Arguments

ftol non-negative numeric. Termination occurs when both the actual and predicted
relative reductions in the sum of squares are at most ftol. Therefore, ftol
measures the relative error desired in the sum of squares.

ptol non-negative numeric. Termination occurs when the relative error between two
consecutive iterates is at most ptol. Therefore, ptol measures the relative error
desired in the approximate solution.

gtol non-negative numeric. Termination occurs when the cosine of the angle between
result of fn evaluation fvec and any column of the Jacobian is at most gtol in
absolute value. Therefore, gtol measures the orthogonality desired between the
function vector and the columns of the Jacobian.

diag a list or numeric vector containing positive entries that serve as multiplicative
scale factors for the parameters. Length of diag should be equal to that of par.
If not, user-provided diag is ignored and diag is internally set.

epsfcn (used if jac is not provided) is a numeric used in determining a suitable step
for the forward-difference approximation. This approximation assumes that the
relative errors in the functions are of the order of epsfcn. If epsfcn is less than
the machine precision, it is assumed that the relative errors in the functions are
of the order of the machine precision.

factor positive numeric, used in determining the initial step bound. This bound is set to
the product of factor and the |diag ∗ par| if nonzero, or else to factor itself.
In most cases factor should lie in the interval (0.1,100). 100 is a generally
recommended value.

maxfev integer; termination occurs when the number of calls to fn has reached maxfev.
Note that nls.lm sets the value of maxfev to 100*(length(par) + 1) if maxfev
= integer(), where par is the list or vector of parameters to be optimized.

maxiter positive integer. Termination occurs when the number of iterations reaches
maxiter.

nprint is an integer; set nprint to be positive to enable printing of iterates

8 nlsLM

Value

A list with exactly nine components:

ftol

ptol

gtol

diag

epsfcn

factor

maxfev

nprint

with meanings as explained under ‘Arguments’.

References

J.J. Moré, "The Levenberg-Marquardt algorithm: implementation and theory," in Lecture Notes
in Mathematics 630: Numerical Analysis, G.A. Watson (Ed.), Springer-Verlag: Berlin, 1978, pp.
105-116.

See Also

nls.lm

Examples

nls.lm.control(maxiter = 4)

nlsLM Standard ’nls’ framework that uses ’nls.lm’ for fitting

Description

nlsLM is a modified version of nls that uses nls.lm for fitting. Since an object of class ’nls’ is
returned, all generic functions such as anova, coef, confint, deviance, df.residual, fitted,
formula, logLik, predict, print, profile, residuals, summary, update, vcov and weights
are applicable.

Usage

nlsLM(formula, data = parent.frame(), start, jac = NULL,
algorithm = "LM", control = nls.lm.control(),
lower = NULL, upper = NULL, trace = FALSE, subset,
weights, na.action, model = FALSE, ...)

nlsLM 9

Arguments

formula a nonlinear model formula including variables and parameters. Will be coerced
to a formula if necessary.

data an optional data frame in which to evaluate the variables informula and weights.
Can also be a list or an environment, but not a matrix.

start a named list or named numeric vector of starting estimates.

jac A function to return the Jacobian.

algorithm only method "LM" (Levenberg-Marquardt) is implemented.

control an optional list of control settings. See nls.lm.control for the names of the
settable control values and their effect.

lower A numeric vector of lower bounds on each parameter. If not given, the default
lower bound for each parameter is set to -Inf.

upper A numeric vector of upper bounds on each parameter. If not given, the default
upper bound for each parameter is set to Inf.

trace logical value indicating if a trace of the iteration progress should be printed.
Default is FALSE. If TRUE, the residual (weighted) sum-of-squares and the pa-
rameter values are printed at the conclusion of each iteration.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional numeric vector of (fixed) weights. When present, the objective func-
tion is weighted least squares. See the wfct function for options for easy speci-
fication of weighting schemes.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The ‘factory-fresh’ default is na.omit. Value na.exclude can be useful.

model logical. If true, the model frame is returned as part of the object. Default is
FALSE.

... Additional optional arguments. None are used at present.

Details

The standard nls function was modified in several ways to incorporate the Levenberg-Marquardt
type nls.lm fitting algorithm. The formula is transformed into a function that returns a vector of
(weighted) residuals whose sum square is minimized by nls.lm. The optimized parameters are then
transferred to nlsModel in order to obtain an object of class ’nlsModel’. The internal C function
C_nls_iter and nls_port_fit were removed to avoid subsequent "Gauss-Newton", "port" or
"plinear" types of optimization of nlsModel. Several other small modifications were made in order
to make all generic functions work on the output.

Value

A list of

m an nlsModel object incorporating the model.

10 nlsLM

data the expression that was passed to nls as the data argument. The actual data
values are present in the environment of the m component.

call the matched call.

convInfo a list with convergence information.

control the control list used, see the control argument.

na.action the "na.action" attribute (if any) of the model frame.

dataClasses the "dataClasses" attribute (if any) of the "terms" attribute of the model
frame.

model if model = TRUE, the model frame.

weights if weights is supplied, the weights.

Author(s)

Andrej-Nikolai Spiess and Katharine M. Mullen

References

Bates, D. M. and Watts, D. G. (1988) Nonlinear Regression Analysis and Its Applications, Wiley

Bates, D. M. and Chambers, J. M. (1992) Nonlinear models. Chapter 10 of Statistical Models in S
eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

J.J. More, "The Levenberg-Marquardt algorithm: implementation and theory," in Lecture Notes
in Mathematics 630: Numerical Analysis, G.A. Watson (Ed.), Springer-Verlag: Berlin, 1978, pp.
105-116.

See Also

nls.lm, nls, nls.lm.control, optim

Examples

Examples from 'nls' doc
DNase1 <- subset(DNase, Run == 1)
using a selfStart model
fm1DNase1 <- nlsLM(density ~ SSlogis(log(conc), Asym, xmid, scal), DNase1)
using logistic formula
fm2DNase1 <- nlsLM(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),

data = DNase1,
start = list(Asym = 3, xmid = 0, scal = 1))

all generics are applicable
coef(fm1DNase1)
confint(fm1DNase1)
deviance(fm1DNase1)
df.residual(fm1DNase1)
fitted(fm1DNase1)
formula(fm1DNase1)
logLik(fm1DNase1)
predict(fm1DNase1)

nlsLM 11

print(fm1DNase1)
profile(fm1DNase1)
residuals(fm1DNase1)
summary(fm1DNase1)
update(fm1DNase1)
vcov(fm1DNase1)
weights(fm1DNase1)

weighted nonlinear regression using
inverse squared variance of the response
gives same results as original 'nls' function
Treated <- Puromycin[Puromycin$state == "treated",]
var.Treated <- tapply(Treated$rate, Treated$conc, var)
var.Treated <- rep(var.Treated, each = 2)
Pur.wt1 <- nls(rate ~ (Vm * conc)/(K + conc), data = Treated,

start = list(Vm = 200, K = 0.1), weights = 1/var.Treated^2)
Pur.wt2 <- nlsLM(rate ~ (Vm * conc)/(K + conc), data = Treated,

start = list(Vm = 200, K = 0.1), weights = 1/var.Treated^2)
all.equal(coef(Pur.wt1), coef(Pur.wt2))

'nlsLM' can fit zero-noise data
in contrast to 'nls'
x <- 1:10
y <- 2*x + 3
Not run:
nls(y ~ a + b * x, start = list(a = 0.12345, b = 0.54321))

End(Not run)
nlsLM(y ~ a + b * x, start = list(a = 0.12345, b = 0.54321))

Examples from 'nls.lm' doc
values over which to simulate data
x <- seq(0,5, length = 100)
model based on a list of parameters
getPred <- function(parS, xx) parS$a * exp(xx * parS$b) + parS$c
parameter values used to simulate data
pp <- list(a = 9,b = -1, c = 6)
simulated data with noise
simDNoisy <- getPred(pp, x) + rnorm(length(x), sd = .1)
make model
mod <- nlsLM(simDNoisy ~ a * exp(b * x) + c,

start = c(a = 3, b = -0.001, c = 1),
trace = TRUE)

plot data
plot(x, simDNoisy, main = "data")
plot fitted values
lines(x, fitted(mod), col = 2, lwd = 2)

create declining cosine
with noise
TT <- seq(0, 8, length = 501)
tau <- 2.2
N0 <- 1000

12 wfct

a <- 0.25
f0 <- 8
Ndet <- N0 * exp(-TT/tau) * (1 + a * cos(f0 * TT))
N <- Ndet + rnorm(length(Ndet), mean = Ndet, sd = .01 * max(Ndet))
make model
mod <- nlsLM(N ~ N0 * exp(-TT/tau) * (1 + a * cos(f0 * TT)),

start = c(tau = 2.2, N0 = 1500, a = 0.25, f0 = 10),
trace = TRUE)

plot data
plot(TT, N, main = "data")
plot fitted values
lines(TT, fitted(mod), col = 2, lwd = 2)

wfct Weighting function that can be supplied to the weights argument of
nlsLM or nls

Description

wfct can be supplied to the weights argument of nlsLM or nls, and facilitates specification of
weighting schemes.

Usage

wfct(expr)

Arguments

expr An expression specifying the weighting scheme as described in the Details sec-
tion below.

Details

The weighting function can take 5 different variable definitions and combinations thereof:

• the name of the predictor (independent) variable

• the name of the response (dependent) variable

• error: if replicates yij exist, the error σ(yij)

• fitted: the fitted values ŷi of the model

• resid: the residuals yi − ŷi of the model

For the last two, the model is fit unweighted, fitted values and residuals are extracted and the model
is refit by the defined weights.

Value

The results of evaluation of expr in a new environment, yielding the vector of weights to be applied.

wfct 13

Author(s)

Andrej-Nikolai Spiess

See Also

nlsLM, nls

Examples

Examples from 'nls' doc
note that 'nlsLM' below may be replaced with calls to 'nls'
Treated <- Puromycin[Puromycin$state == "treated",]

Weighting by inverse of response 1/y_i:
nlsLM(rate ~ Vm * conc/(K + conc), data = Treated,
start = c(Vm = 200, K = 0.05), weights = wfct(1/rate))

Weighting by square root of predictor \sqrt{x_i}:
nlsLM(rate ~ Vm * conc/(K + conc), data = Treated,
start = c(Vm = 200, K = 0.05), weights = wfct(sqrt(conc)))

Weighting by inverse square of fitted values 1/\hat{y_i}^2:
nlsLM(rate ~ Vm * conc/(K + conc), data = Treated,
start = c(Vm = 200, K = 0.05), weights = wfct(1/fitted^2))

Weighting by inverse variance 1/\sigma{y_i}^2:
nlsLM(rate ~ Vm * conc/(K + conc), data = Treated,
start = c(Vm = 200, K = 0.05), weights = wfct(1/error^2))

Index

∗ nonlinear
nls.lm, 2
nls.lm.control, 7
nlsLM, 8
wfct, 12

∗ optimize
nls.lm, 2
nls.lm.control, 7
nlsLM, 8
wfct, 12

∗ regression
nls.lm, 2
nls.lm.control, 7
nlsLM, 8
wfct, 12

anova, 8

coef, 4, 8
confint, 4, 8

deviance, 4, 8
df.residual, 4, 8

fitted, 8
formula, 8, 9

logLik, 8

na.exclude, 9
na.fail, 9
na.omit, 9
nls, 5, 8–10, 12, 13
nls.lm, 2, 8–10
nls.lm.control, 2, 5, 7, 9, 10
nlsLM, 8, 12, 13

optim, 5, 10
options, 9

predict, 8

print, 4, 8
profile, 8

residuals, 4, 8

summary, 4, 8

update, 8

vcov, 4, 8

weights, 8
wfct, 12

14

	nls.lm
	nls.lm.control
	nlsLM
	wfct
	Index

